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Abstract—We consider production planning problems formalized as optimization problems with
a multi-index constraint system of the transport type. These problems arise, for instance, upon
constructing a portfolio of orders, master scheduling, etc. We consider computational schemes
of solving this problem for different kinds of optimization functions.
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1. INTRODUCTION

At present, planning processes automation for industrial systems has become increasingly rele-
vant due to the intensification of production. The following classes of problems are usually consid-
ered: the problem of constructing a portfolio of orders, master scheduling problems, and calendar
planning problems. Calendar planning problems are considered in scheduling theory and are, in
essence, distribution problems for constrained resources over time. A lot of attention has been
devoted to these problems in scientific literature [1–5]. Order portfolio design and master schedul-
ing are less known. The order portfolio design problem is to determine which orders a factory is
going to fulfill over the planning period. These portfolios are usually designed for an upcoming
year. The master scheduling problem is to distribute the production schedule of a company, found
after solving the order portfolio problem, into calendar subperiods (months). These problems are
not considered in the general setting, taking into account all connections and dependencies, as in
calendar planning problems, but usually with a certain degree of idealization. Instead of specific
activities with their durations one considers volumetrics (labor hours, roubles, unit tons) related
to a collection of activities that comprise an order.

We will consider the order portfolio and master scheduling problems as distribution problems
for limited resources in multi-index hierarchical systems of the transport type [6–10]. The resource
allocation problem has been a subject of many studies (see, e.g., [11–15]). An important difference
of our work is that we formalize problems of this class as optimization problems with a multi-index
system of constraints of the transport type. In this work, we give the settings of problems arising
upon designing an order portfolio and master scheduling. We consider computational schemes for
solving the corresponding multi-index optimization problems.

2. PROBLEM SETTINGS

2.1. Order Portfolio Design Problem

We have to construct a portfolio of orders for a factory that would satisfy certain predefined
general bounds on the factory’s productivity and the orders’ labor intensity. Let 𝐼 be the set of
departments of the factory, 𝐽 be the set of orders, 𝐾 be the set of items. By 𝐴𝑖 we denote the
“productivity” of a subdivision 𝑖, i.e., the total amount of work that department 𝑖 can perform
over the planning period; 𝐵𝑘 denotes the amount of work planned to be done by the factory over
the planning period with respect to item 𝑘; 𝐶𝑖𝑘 denotes the amount of work planned to be done
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by the 𝑖th department for the 𝑘th order; 𝐷𝑗𝑘 is the amount of work planned to be done for the
𝑘th item of the 𝑗th order; 𝑒𝑖𝑗𝑘 is the profit that the factory plans to earn for making a single unit
of the amount of work done in department 𝑖 on item 𝑘 of order 𝑗, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾.

The order portfolio design problem is to determine the values of 𝑥𝑖𝑗𝑘, i.e., the amount of work
that will be done in department 𝑖 on item 𝑘 of order 𝑗, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾. For these values, the
following constraints hold:

∑
𝑗∈𝐽

∑
𝑘∈𝐾

𝑥𝑖𝑗𝑘 ⩽ 𝐴𝑖, 𝑖 ∈ 𝐼, (1)

∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑥𝑖𝑗𝑘 ⩾ 𝐵𝑘, 𝑘 ∈ 𝐾, (2)

∑
𝑗∈𝐽

𝑥𝑖𝑗𝑘 ⩽ 𝐶𝑖𝑘, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, (3)

∑
𝑖∈𝐼

𝑥𝑖𝑗𝑘 ⩾ 𝐷𝑗𝑘, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, (4)

𝑥𝑖𝑗𝑘 ⩾ 0, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, (5)

the following criterion:

∑
𝑖∈𝐼

∑
𝑗∈𝐽

∑
𝑘∈𝐾

𝑒𝑖𝑗𝑘𝑥𝑖𝑗𝑘 → max , (6)

which characterizes the total profit made by the company, is to be maximized. The constraints we
have introduced mean:

(1) that the amount of work done for all orders and items in the 𝑖th department must not exceed
the “productivity” of this department;

(2) that the amount of work planned for the 𝑘th item must be done in the company’s departments
over the planning period;

(3) that the planned amount of work must not exceed the amount of work that will be done by
the 𝑖th department for the 𝑘th item;

(4) that the amount of work planned for the 𝑘th item of the 𝑗th order must be done in the
company’s departments during the planning period;

(5) means natural conditions on the variables.

In order for the system of constraints (1)–(5) to be feasible, the following conditions must hold:∑
𝑖∈𝐼

𝐶𝑖𝑘 ⩾ 𝐵𝑘,
∑
𝑖∈𝐼

𝐶𝑖𝑘 ⩾
∑
𝑗∈𝐽

𝐷𝑗𝑘, 𝑘 ∈ 𝐾. Since the company is not interested in making extra

product, the problem setting implies that the original values are related by the following natural
conditions:

∑
𝑖∈𝐼

𝐶𝑖𝑘 = 𝐵𝑘,
∑
𝑖∈𝐼

𝐶𝑖𝑘 =
∑
𝑗∈𝐽

𝐷𝑗𝑘, 𝑘 ∈ 𝐾, for which constraints (2), (3), (4) should hold

as equalities. In this setting, the system of constraints (1)–(5) may be infeasible due to the failure
of (1): the total productivity of all departments may be insufficient to fulfill the orders which the
company would like to include in the production plan. If the departments’ productivities can be
increased, the following problem setting becomes natural.

We denote by 𝑞𝑖 the costs of increasing the productivity of the 𝑖th department by one, by 𝑦𝑖 the
value by which the 𝑖th department’s productivity will be increased, and by 𝑄𝑖 the value by which
the 𝑖th department productivity can be increased, 𝑖 ∈ 𝐼.

AUTOMATION AND REMOTE CONTROL Vol. 71 No. 10 2010



MULTIINDEX OPTIMAL PRODUCTION PLANNING PROBLEMS 2147

Then the order portfolio design problem is transformed into a problem with the original prob-
lem’s constraints (2)–(5), new constraints

∑
𝑗∈𝐽

∑
𝑘∈𝐾

𝑥𝑖𝑗𝑘 ⩽ 𝐴𝑖 + 𝑦𝑖, 𝑖 ∈ 𝐼; (7)

0 ⩽ 𝑦𝑖 ⩽ 𝑄𝑖, 𝑖 ∈ 𝐼, (8)

and criterion
∑
𝑖∈𝐼

𝑞𝑖𝑦𝑖 → min (9)

that characterizes the total costs of increasing productivity across the company. The newly intro-
duced constraints have the following meaning:

(7) means that the amount of work done across all orders and items in the 𝑖th department must
not exceed the department’s productivity, taking into account its possible increase;

(8) means that the productivity increase for the 𝑖th department must not exceed the maximal
possible value.

2.2. The Master Scheduling Problem

The master scheduling problem is to distribute the production schedule, found at the order
portfolio design stage, over calendar subperiods. In addition to the sets 𝐼, 𝐽 , 𝐾 that we have
already introduced for the previous problem, we introduce the set 𝑇 = {1, 2, . . . , 𝑇0} of numbers
of planning cycles and values 𝑡−𝑗 , 𝑡

+
𝑗 denoting the start tick number (start time) and the end tick

number (schedule time) of fulfilling order 𝑗, 𝑡−𝑗 , 𝑡+𝑗 ∈ 𝑇 , 𝑗 ∈ 𝐽 . The initial parameters of the
master planning problem will include, 𝐴𝑖𝑡, 𝐵𝑖𝑗𝑡, 𝐶𝑖𝑘𝑡, 𝐷𝑖𝑗𝑘, 𝐸𝑖𝑗𝑘𝑡, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 ,
i.e., respectively, the factory’s departments capacities per planning tick, the amounts of work that
must be done in relation to the orders in the departments per planning tick, the amounts of work
in orders and items that must be done in the company departments, the amounts of work that
must be done in the company departments in relation to orders and items per planning tick. There
is a natural connection between the introduced parameters and the solution of the order portfolio
design problem. Let 𝑥0

𝑖𝑗𝑘, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾, be a solution of the order portfolio design problem.

Then
∑
𝑡∈𝑇

𝐵𝑖𝑗𝑡 =
∑
𝑘∈𝐾

𝑥0
𝑖𝑗𝑘,

∑
𝑡∈𝑇

𝐶𝑖𝑘𝑡 =
∑
𝑗∈𝐽

𝑥0
𝑖𝑗𝑘, 𝐷𝑖𝑗𝑘 = 𝑥0

𝑖𝑗𝑘, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾.

The problem of distributing a factory’s schedule into calendar subperiods is to determine the
values of 𝑧𝑖𝑗𝑘𝑡, i.e., the amounts of work that will be done in department 𝑖 for item 𝑘 of order 𝑗
during tick 𝑡, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , for which the following constraints hold:

∑
𝑗∈𝐽

∑
𝑘∈𝐾

𝑧𝑖𝑗𝑘𝑡 ⩽ 𝐴𝑖𝑡, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, (10)

∑
𝑘∈𝐾

𝑧𝑖𝑗𝑘𝑡 ⩾ 𝐵𝑖𝑗𝑡, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, (11)

∑
𝑗∈𝐽

𝑧𝑖𝑗𝑘𝑡 ⩾ 𝐶𝑖𝑘𝑡, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, (12)

∑
𝑡∈𝑇

𝑧𝑖𝑗𝑘𝑡 ⩾ 𝐷𝑖𝑗𝑘, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, (13)

𝑧𝑖𝑗𝑘𝑡 ⩽ 𝐸𝑖𝑗𝑘𝑡, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, (14)

𝑧𝑖𝑗𝑘𝑡 = 0, 𝑡 ∈ 𝑇 ∖
{
𝑡−𝑗 , 𝑡−𝑗 + 1, . . . , 𝑡+𝑗

}
, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, (15)

𝑧𝑖𝑗𝑘𝑡 ⩾ 0, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇. (16)
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The introduced constraints mean:

(10) the amount of work done by all orders and items in the 𝑖th department must not exceed
the “capacity” of this department during tick 𝑡;

(11) the amount of work planned for the 𝑖th department during tick 𝑡 on order 𝑗 must be done;

(12) the amount of work planned for the 𝑖th department during tick 𝑡 on item 𝑘 must be done;

(13) the amount of work planned for the 𝑖th department for item 𝑘 of order 𝑗 must be done;

(14) constraints on excess production;

(15) constraints for keeping up with initial and schedule times for the orders;

(16) natural conditions on the variables.

Among all admissible plans we are looking for the plans that satisfy the conditions of efficient
operation for a production system. For a master planning problem, the operation efficiency depends
on several factors. As experience in solving these problems has shown [7, 9], it is hard to formalize
these factors as continuous functions for the user. The user is more likely to be able to estimate the
parameters of the desired plan by setting the constraints on the values of deviations inside which
these values are “perfect,” “very good,” “good,” “satisfactory,” etc. Then the formalized criteria of
the master planning problem can be represented as piecewise constant functions that break the set
of deviation values up into deviation “quality” regions for each criterion. These functions can be
functions whose range is given by the set of nonnegative integers from 0 to 𝑝 (0 meaning “perfect,”
1—“very good” and so on).

Segments of possible values for some plan parameters are set, and they determine the opera-
tion efficiency for the production system. Plan parameters can be any parameters determined by
constraints (10)–(16). Let the system operation efficiency be related to using the departments’
capacities in planning ticks defined by the set 𝐻 ⊆ 𝐼 × 𝑇 . Then these segments will be [0, 𝐴𝑖𝑡],
(𝑖, 𝑡) ∈ 𝐻. Further, for each of the plan parameters related to segment [0, 𝐴𝑖𝑡] we define a collection

of 𝑝+1 nested segments 𝑆
(𝑙)
𝑖𝑡 , 𝑙 = 0, 𝑝, such that 𝑆

(𝑙)
𝑖𝑡 ⊆ 𝑆

(𝑙+1)
𝑖𝑡 , 𝑙 = 0, 𝑝 − 1, 𝑆

(𝑝)
𝑖𝑡 = [0, 𝐴𝑖𝑡], (𝑖, 𝑡) ∈ 𝐻.

With each of these parameters, we associate a preference function 𝜒𝑖𝑡(𝑤,𝑆
(0)
𝑖𝑡 , 𝑆

(1)
𝑖𝑡 , . . . , 𝑆

(𝑝)
𝑖𝑡 ) that

takes value 𝑟 if 𝑤 ∈ 𝑆
(𝑟)
𝑖𝑡 and 𝑤 /∈ 𝑆

(𝑟−1)
𝑖𝑡 , 𝑟 = 0, 𝑝, (𝑖, 𝑡) ∈ 𝐻. Then we will consider the problem

of finding an admissible plan 𝑧𝑖𝑗𝑘𝑡, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 , satisfying the system of constraints
(10)–(16) and minimizing the preference functions for selected parameters:

𝜒𝑖𝑡

⎛
⎝∑

𝑘∈𝐾

∑
𝑗∈𝐽

𝑧𝑖𝑗𝑘𝑡, 𝑆
(0)
𝑖𝑡 , 𝑆

(1)
𝑖𝑡 , . . . , 𝑆

(𝑝)
𝑖𝑡

⎞
⎠→ min, (𝑖, 𝑡) ∈ 𝐻. (17)

The problem (10)–(17) is a multicriterial optimization problem. Assuming that the chosen
plan parameters are sorted in the order of their importance with relation to the factory operation
efficiency, as a compromise scheme we consider the lexicographic ordering of individual optimality
criteria.

To formalize the compromise scheme for the considered multicriterial problem, we introduce
several auxiliary values. Let the elements of 𝐻 be ordered based on the priorities of the cho-
sen parameters, and 𝐻= {(𝑖1, 𝑡1), (𝑖2, 𝑡2), . . . , (𝑖∣𝐻∣, 𝑡∣𝐻∣)}. Let 𝑎, 𝑏 ∈ 𝑁 . We introduce the set

𝑉𝑎,𝑏 ={(𝑣1, 𝑣2, . . . , 𝑣𝑏)∣ 𝑣𝑙 = 1, 𝑎, 𝑙 = 1, 𝑏}. Then by 𝑉𝑎,𝑏 we will denote (similarly to [6, 9]) the set of
vertices of an 𝑎-valued 𝑏-dimensional cube. Further, we introduce the (𝑝+1)-valued ∣𝐻∣-dimensional
cube on which we define an ordering Π. To each cube vertex �⃗� ∈ 𝑉(𝑝+1),∣𝐻∣ we associate a sys-
tem Ω(�⃗�). The system Ω(�⃗�) contains constraints (10)–(16) independent of the cube vertex and con-

straints dependent on the vertex in the following way: if 𝑣𝑙 = 𝑠 then we add
∑
𝑘∈𝐾

∑
𝑗∈𝐽

𝑧𝑖𝑙𝑗𝑘𝑡𝑙 ∈ 𝑆
(𝑠)
𝑖𝑙𝑡𝑙

,

𝑙 = 1, ∣𝐻∣, to the system. On the set of cube vertices, we define a binary function 𝑔(�⃗�) which is one
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if the system Ω(�⃗�) is feasible and zero otherwise. By 𝑉 = {�⃗� ∈ 𝑉(𝑝+1),∣𝐻∣∣𝑔(�⃗�) = 1} we denote the
set of vertices of the (𝑝 + 1)-valued ∣𝐻∣-dimensional cube, for which the corresponding function 𝑔
equals one.

As the ordering Π, we consider the lexicographic ordering: �⃗� 1Π�⃗� 2 if and only if for some 𝑙,
𝑙 = 1, ∣𝐻∣, 𝑣1𝑙 < 𝑣2𝑙 and, at the same time, 𝑣1𝑟 = 𝑣2𝑙 for 𝑟 = 1, 𝑙 − 1.

We now consider the following problem of finding the optimal cube vertex �⃗� 0:

�⃗� 0 ∈ 𝑉, (18)

�⃗� 0Π�⃗�, �⃗� ∈ 𝑉. (19)

The optimal vertex �⃗� 0, which is a solution of (18), (19), defines an optimal solution of the multi-
criterial problem (10)–(17) for a lexicographical compromise scheme.

Remark. For the problem setting (18), (19), the production system operation efficiency param-
eters may include conditions defined not by a single group of constraints but by several groups.
Moreover, we can account for all subsets of the constraints in selected groups.

3. SOLUTION ALGORITHMS

Problems posed in Section 2 are related to studying optimization problems whose system of
constraints is a multi-index system of linear inequalities of the transport type. To describe multi-
index problems, we use the following formalization. Suppose that we are given a set of indices
𝑁(𝑠) = {𝑖1, 𝑖2, . . . , 𝑖𝑠} and a set 𝑀 ⊆ 2𝑁(𝑠). Then by 𝑊 (𝑀) we denote the multi-index linear
programming problem of transport type with the set of indices 𝑁(𝑠) and the system of constraints
that consists, for each 𝑓 ∈𝑀 , of constraints for subsums in which the summation is over all indices
of the set 𝑓 for fixed sets of index values from 𝑁(𝑠)∖𝑓 . For convenience, we denote by 𝐸𝑁(𝑠) the set
of all possible values of 𝑠-index sets of indices from the set 𝑁(𝑠); by 𝐷(𝑀) we denote the system
of constraints for the problem 𝑊 (𝑀).

In genera, only universal linear programming techniques can be used to solve the problem𝑊 (𝑀).
However, the specifics of our problems (linear constraints of the transport type) allows us to intro-
duce more efficient algorithms for a particular class of considered problems by reducing them to
flow algorithms [8]. In what follows we give the results of reducing 𝑊 (𝑀) to flow algorithms found
in [8].

Definition 1. A set 𝑀 , 𝑀 ⊆ 2𝑁(𝑠), is called 𝑘-nesting if there exists a partition of set 𝑀 into

𝑘 subsets 𝑀𝑖 = {𝑓 (𝑖)
1 , 𝑓

(𝑖)
2 , . . . , 𝑓

(𝑖)
𝑚𝑖}, 𝑖 = 1, 𝑘, such that 𝑓

(𝑖)
𝑗 ⊆ 𝑓

(𝑖)
𝑗+1, 𝑗 = 1,𝑚𝑖 − 1, 𝑖 = 1, 𝑘.

Theorem 1. In order for the problem 𝑊 (𝑀) to be reducible to a minimal flow problem, it suffices
for the set 𝑀 to be 2-nesting.

Corollary 1. If the set𝑀 is 2-nesting then problem 𝑊 (𝑀) (system of inequalities 𝐷(𝑀)) reduces
to finding the minimal flow (admissible flow) in a network with 𝑂(∣𝐸𝑁(𝑠)∣) vertices and 𝑂(∣𝐸𝑁(𝑠)∣)
edges.

Further, using known flow algorithms (see [16, 17]), we can formulate the following result.

Corollary 2. If the set 𝑀 is 2-nesting then there exists an algorithm for the problem 𝑊 (𝑀)
(system of inequalities 𝐷(𝑀)) that takes 𝑂(∣𝐸𝑁(𝑠)∣3 log2 ∣𝐸𝑁(𝑠)∣) (𝑂(∣𝐸𝑁(𝑠)∣2 log ∣𝐸𝑁(𝑠)∣)) compu-
tational steps.

Problem (1)–(6) corresponds to problem 𝑊 (𝑀) for 𝑠 = 3, 𝑁(𝑠) = {𝑖, 𝑗, 𝑘}, 𝑀 = {{𝑗, 𝑘}, {𝑖, 𝑗},
{𝑗}, {𝑖}}, 𝐸𝑁(𝑠) = 𝐼 × 𝐽 × 𝐾. For the set 𝑀 , there exists a partition 𝑀1 = {{𝑗, 𝑘}, {𝑗}}, 𝑀2 =
{{𝑖, 𝑗}, {𝑖}}, so the set 𝑀 is 2-nesting. Therefore, by applying the proposed approach and using
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Corollary 2, we can construct an algorithm for the order portfolio design problem (1)–(6) that
requires 𝑂(∣𝐼 × 𝐽 × 𝐾∣3 log2 ∣𝐼 × 𝐽 ×𝐾∣) computational steps and an algorithm for deciding the
feasibility of system (1)–(5) that requires 𝑂(∣𝐼 × 𝐽 ×𝐾∣2 log ∣𝐼 × 𝐽 ×𝐾∣) computational steps.

Suppose that the system of constraints 𝐷(𝑀) is infeasible. A subset of two-sided inequalities in
the system is known for which left and/or right borders are allowed to move. We call constraints
with allowed changes in borders “desired,” and other constraints we call “hard.” There are known
costs for violating desired constraints. The problem is to find unknown values that satisfy hard
constraints and minimize the total cost of violating desired constraints. We denote this problem
by 𝐿(𝑀).

According to Corollary 1, in case the set 𝑀 is 2-nesting studying the system of constraints 𝐷(𝑀)
reduces to finding an admissible flow in a network. Thus, problem 𝐿(𝑀) reduces studying an
infeasible system 𝐷(𝑀) to studying an infeasible network model. In [18], it has been shown that
the flow search problem in an infeasible network with 𝑛 vertices and 𝑚 edges reduces to finding a
minimal flow in a network with 𝑂(𝑛 + 𝑚) vertices and 𝑂(𝑚) edges. Then, using Corollary 1 and
applying known minimal flow algorithms [16, 17], we can formulate the following results.

Corollary 3. If the set 𝑀 is 2-nesting then the problem 𝐿(𝑀) reduces to the minimal flow prob-
lem in a network with 𝑂(∣𝐸𝑁(𝑠)∣) vertices and 𝑂(∣𝐸𝑁(𝑠)∣) edges.

Corollary 4. If the set 𝑀 is 2-nesting then there exists an algorithm for the problem 𝐿(𝑀) that
requires 𝑂(∣𝐸𝑁(𝑠)∣3 log2 ∣𝐸𝑁(𝑠)∣) computational steps.

The problem (2)–(5), (7)–(9) corresponds to the problem 𝐿(𝑀) with 𝑠 = 3, 𝑁(𝑠) = {𝑖, 𝑗, 𝑘}, 𝑀 =
{{𝑗, 𝑘}, {𝑖, 𝑗}, {𝑗}, {𝑖}}, 𝐸𝑁(𝑠) = 𝐼 × 𝐽 ×𝐾, and the set 𝑀 , as we have already shown, is 2-nesting.
Therefore, using the proposed approach and applying Corollary 4, we can construct an algorithm
for the order portfolio design problem (2)–(5), (7)–(9) that requires 𝑂(∣𝐼×𝐽×𝐾∣3 log2 ∣𝐼×𝐽×𝐾∣)
computational steps.

In [9], an algorithm for finding the optimal vertex in a multidimensional multivalued cube was
devised. It was proven that finding an optimal vertex for a (𝑝 + 1)-valued ∣𝐻∣-dimensional cube
reduces to a feasibility check for about ∣𝐻∣ log2(𝑝 + 1) systems of the form Ω(�⃗�). When solving
problem (18), (19) that arises in master planning, the corresponding system Ω(�⃗�) is a system of
the form 𝐷(𝑀), where 𝑠 = 4, 𝑁(𝑠) = {𝑖, 𝑗, 𝑘, 𝑡}, 𝑀 = {{𝑗, 𝑘}, {𝑘}, {𝑗}, {𝑡}, ∅}. The set 𝑀 is
not 2-nesting in this case. To check feasibility in the corresponding system 𝐷(𝑀), we can use
the Agmon–Motzkin orthogonal projection method [19, 20] suitably modified in [9]. The Agmon–
Motzkin orthogonal projection method is an iterative algorithm. On each step, a constraint violated
by the current solution is determined. Then the current solution is projected on the hyperplane
related to the violated constraint, and we proceed to the next step. In [19, 20], it is shown that this
method converges.

In a special case when the system of constraints for a master planning problem is given by
conditions (10), (11), (13)–(16), to solve the problem (18), (19) the corresponding system Ω(�⃗�) is
a system of the kind 𝐷(𝑀), where 𝑠 = 4, 𝑁(𝑠) = {𝑖, 𝑗, 𝑘, 𝑡}, 𝑀 = {{𝑗, 𝑘}, {𝑘}, {𝑡}, ∅}, 𝐸𝑁(𝑠) =
𝐼 ×𝐽 ×𝐾×𝑇 . For the set 𝑀 there exists a partition 𝑀1 = {{𝑗, 𝑘}, {𝑘}, ∅}, 𝑀2 = {{𝑡}}, therefore,
𝑀 is 2-nesting. Then, by Corollary 2, we can construct a feasibility checking algorithm for the
corresponding system Ω(�⃗�) that requires 𝑂(∣𝐼 × 𝐽 ×𝐾 × 𝑇 ∣2 log ∣𝐼 × 𝐽 ×𝐾 × 𝑇 ∣) computational
steps. Therefore, the proposed algorithm for finding an optimal cube vertex will require 𝑂(∣𝐼×𝐽×
𝐾 × 𝑇 ∣2 log ∣𝐼 × 𝐽 ×𝐾 × 𝑇 ∣∣𝐻∣ log 𝑝) computational steps.

4. CONCLUSION

The proposed approach to studying optimal planning problems for production systems allows to
reduce a wide class of problems important in practice to well-developed efficient flow algorithms.
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The software created on the basis of the results of this work was tested in solving master plan-
ning problems for factories with piece and small-batch production (Instrumental production FGUP
“Yu.E. Sedakov FNPC NIIIS,” number of orders—up to 25 000, number of departments—up to 100,
planning horizon—1 year, planning tick—a month, solution time—up to 5 minutes [7]) and oil re-
fineries (Surgut plant of condensate stabilization JSC “Surgutgazprom,” number of orders—up
to 100, number of departments—up to 5, number of ticks—up to 30, solution time—up to 10 min-
utes, [10]).
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